
J .  Fluid Mech. (1987), vol. 177, pp.  307-337 

Printed in Gr tain 
307 

The motion of a cylinder of fluid released from rest 
in a cross-flow 

By JAMES W. ROTTMANt,  JOHN E. SIMPSON 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

AND PETER K. STANSBY 
Department of Engineering, Simon Engineering Laboratories, University of Manchester, 

Oxford Road, Manchester M13 9PL, UK 

(Received 19 June 1985 and in revised form 18 September 1986) 

The two-dimensional motion of a cylinder of fluid released from rest into a flow that 
is uniform far upstream of the cylinder is studied. We consider cases where the 
cylinder is initially of circular cross-section and the fluid is either inviscid or viscous. 
For the inviscid fluid, we use analytical methods to determine the motion for small 
and large times after release and three numerical methods, the vortex-sheet method, 
the vortex-blob method and the vortex-in-cell method, to determine the intermediate- 
time motion. For the viscous-fluid problem we use the vortex-in-cell method with 
random walks to compute both the initial flow around the cylinder and the motion 
of the released fluid at a Reynolds number of 484. In  the inviscid case, the released 
fluid deforms into a structure that resembles a vortex pair that propagates down- 
stream at a speed less than the onset flow speed. In  the viscous case, after a wake 
representative of a KBrmBn vortex street has developed, the released fluid usually 
deforms into an elongated horseshoe shape that travels downstream at a speed greater 
or less than the incident flow speed (depending on when in the vortex-shedding cycle 
the cylinder is released). The results of the numerical calculations are compared with 
some simple experiments in a water channel. 

1. Introduction 
This paper describes a study of how a volume of fluid released from rest in a 

surrounding flow is subsequently deformed and accelerated. Although there are 
several ways that such a flow may be produced in practice, the specific application 
we had in mind was the series of field trials carried out recently at Thorney Island, 
UK, as part of the UK Health & Safety Executive’s research programme on the 
atmospheric dispersion of heavy gases, McQuaid (1984). In  these trials a cylinder of 
gas was released into the atmosphere by rapidly pulling the sides of its containment 
vessel (made of plastic sheeting) to the ground with the assistance of elastic cords. 
This method was successful in producing an unconfined cylinder of gas momentarily 
at  rest in the ambient flow. Similar release methods have been used in the field 
experiments described by Picknett (1981) and in the wind-tunnel simulations 
described by Hall, Hollis & Ishaq (1984). 

Present address: Department of Marine, Earth & Atmospheric Sciences, North Carolina State 
University, Raleigh, NC 27695, USA. 
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For simplicity we consider only two-dimensional flows of incompressible fluids. 
Specifically, we take the cross-section of the cylinder containing the fluid a t  rest to  
be circular and we calculate the subsequent motion of the released fluid. First we 
consider the case for which the two fluids are inviscid and the initial conditions are 
those of steady potential flow about the cylinder. In  the second case the two fluids 
are viscous and before release we have either a uniformly accelerating flow of short 
duration or a flow with constant velocity of long duration incident on the cylinder. 
After release the onset velocity is always constant and the Reynolds number (based 
on the diameter of the cylinder) is 484. In  this latter case, the initial flows about the 
cylinder must be computed numerically, as must the subsequent motion after the 
cylinder wall is removed. The methods we use are mostly numerical, but we are able 
to use some analytical techniques for small- and large-time motion in the inviscid-flow 
case. 

We use the so-called vortex-sheet method (descriptions of the various vortex 
methods for computing fluid flows are given, for example, in review articles by 
Saffman & Baker 1979 and Leonard 1980) to compute numerically the initial motion 
for the inviscid-flow problem. When both fluids are inviscid, the total flow is 
represented by an infinitesimally thin vortex sheet that  separates the released fluid 
from the surrounding fluid. The numerical method computes the motion of this vortex 
sheet. We found that the vortex-sheet method breaks down a short time after the 
contained fluid is released, a well-known difficulty with this method. As discussed 
more fully by Moore (1979, 1981), vortex sheets that are not being rapidly stretched 
everywhere are susceptible to Helmholtz instability which results, in finite time, in 
the development of a singularity in the sheet. We use a filtering technique proposed 
by Krasny (1986a) in the vortex-sheet method to accurately compute the motion up 
to  the time the singularity appears. The questions of existence and uniqueness of 
solutions for the strictly inviscid problem after the appearance of the singularity have 
not been fully resolved and apparently the vortex-sheet method is not convergent 
after this time. 

I n  real flows this instability is inhibited by slight thickening of the vortex sheet 
due to viscous diffusion. We use two numerical methods, the vortex-blob method (a 
modification of the vortex-sheet method) and the vortex-in-cell method, to mimic 
this thickening in a somewhat ad hoc way. Both methods, in effect, replace the 
infinitesimally thin vortex sheet with one of finite thickness. The vortex-in-cell 
method (at least of the form used here) causes a sheet to  break up into fine-scale 
structures but experience, e.g. Baker (1979), suggests that large-scale features are not 
significantly affected and for our problem the general features of the results using 
these two methods are in quite good agreement. These methods stabilize the 
calculation, permitting us to compute the motion for times after the singularity 
appears in the strictly inviscid flow, although the problem has to  be slightly redefined 
(since i t  is no longer strictly inviscid) t o  allow this. 

For the viscous problem we use the fractional step method of Chorin (1973) to  solve 
the ‘vorticity equation’ by splitting i t  into its convective and diffusive parts. The 
convective part is solved by time-stepping the positions of point (or discrete) vortices 
in an inviscid calculation and diffusion is superimposed by adding normally 
distributed random walks to the orthogonal coordinates of each vortex at each 
time-step. A large number of discrete vortices is required to give satisfactory flow 
simulations and they are handled efficiently in the inviscid part of the calculation 
by the vortex-in-cell method, which is well suited to fields of vorticity, e.g. 
Christiansen (1973). (The vortex-in-cell method for sheets has the same formulation 
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since the sheet is represented as a series of point vortices). The no-slip condition at 
a solid boundary is satisfied at each time-step by introducing a vortex sheet at  the 
surface, which then diffuses into the flow as discrete vortices. This formulation has 
previously been applied to flow around cylinders by Stansby & Dixon (1983) and to 
oscillatory flows over plane and wavy beds by Smith & Stansby (1985). Here we use 
the method with steady incident flow to generate a wake representative of a Karman 
vortex street before release. We also use uniformly accelerating incident flows of 
various short durations before release (after which the incident flow is steady) to 
create physically possible, though somewhat artificial, situations to compare with the 
‘stabilized’ inviscid calculations mentioned above. In  both cases there will be a thin 
layer of vorticity on the cylinder surface. 

The results of the calculations show that the circular cross-section of the released 
fluid first deforms, in all cases, by lengthening in the cross-stream direction and 
shortening in the streamwise direction. In  the inviscid or ‘thin-layer’ case, the 
released fluid then quickly evolves into a structure that resembles a vortex pair 
propagating downstream at a speed somewhat less than the speed of the surrounding 
flow. In the viscous case with a well-developed wake, the released fluid generally 
evolves into an irregular, elongated horseshoe shape that travels downstream with 
a speed greater or less than that of the surrounding flow, depending on when in the 
vortex-shedding cycle the fluid is released. 

We also report the results of some simple experiments in a water channel, which 
consist of the release of dyed, neutrally buoyant fluid in a continuous-flow channel. 
The visual results are in modest qualitative agreement with the calculations. For the 
case with a well-developed wake we measured the position of the centre of mass of 
the released fluid as a function of time and found that it compares favourably with 
the computed values. 

The inviscid-fluid problem is discussed in $2. After the mathematical formulation 
of the problem, some analysis of the very small-time behaviour is described, then the 
results of the numerical calculations are presented and finally some analysis of the 
large-time behaviour is given. The case with a well-developed wake is discussed and 
the results of the numerical calculations are presented in $3. The experimental 
techniques and results are described in $4. In  the appendices we outline the three 
numerical techniques. 

2. Release with inviscid fluids 
We first consider the problem for inviscid fluids. Initially a cylinder of fluid with 

a circular cross-section of radius ro, is at rest in a surrounding potential flow of fluid 
of possibly different density. The surrounding flow far from the cylinder is uniform 
with speed U,,. A t  time t = 0 the cylinder wall is dissolved instantaneously, releasing 
the fluid contained inside into the surrounding flow. Since the fluids are inviscid, the 
vortex sheet that marks the boundary between the surrounding fluid and the fluid 
originally contained in the cylinder is convected with the fluid flow and does not 
diffuse. A sketch of this boundary, denoted by 8(t) a t  some time after the cylinder 
wall is dissolved, is shown in figure 1, which serves to define the coordinate system 
and nomenclature used in the later sections of this paper. 

2.1. Problem formulation 
Quantities associated with the released fluid will be denoted by a subscript 1 and those 
associated with surrounding fluid by a subscript 2. Since the flow is irrotational inside 
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FIGURE 1 .  A definition sketch of the flow. The dashed line represents the initial boundary of 
contained fluid. The solid line represents this boundary at some time after release. 

and outside # ( t ) ,  we can define in the conventional way a velocity potential q5 in each 
of these two regions. Since both fluids are incompressible, the velocity potentials 
satisfy the field equations 

v24, = 0 (2- 1) 

v2q5, = 0. (2.2) 

The boundary conditions are that the fluid velocities normal to # ( t )  are continuous, 

where n is a coordinate measuring distance normal to the interface, that the pressure 
is continuous across s(t), 

and that the surrounding flow is uniform with speed U, far from the cylinder, 

Pl = P2 on W ) ,  (2.4) 

% U,  & S T + o O .  ax 
The pressure can be eliminated from the problem by use of Bernoulli’s theorem, which 
in the two regions may be expressed as 

(2.6) Pl+P1z+Ll(vq5J2 341 = 0, 

Using (2.6) and (2.7) in (2.4) gives the new boundary condition, 
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fluids, so the acceleration of gravity does not appear in (2.6)-(2.8). 

31 1 

Note that we consider only inertial effects due to the different densities of the two 

The initial conditions are 

X(B,, 0) = ro COS~, ,  Y(8,, 0) = ro sine,, (2.9a, b) 

(2.10a, b) 

where X(8, ,  t )  and Y(8,, t )  are the coordinates of a parametric representation of 8(t) 
in terms of the parameter 6, (the initial angular positions of fluid particles marking 
the interface). 

The problem then, is to determine q51, q52 and the position of the interface 8(t) at 
subsequent times. The vortex-sheet method, which solves numerically the problem 
outlined here, is outlined in Appendix A. 

q51(r, 8, 0) = 0, q52(r, 8, 0) = V ,  r+- cos6, ( 3 

2.2. Very s m l l  time 
Before the cylinder wall is removed, the flow is steady and exerts no net force on the 
cylinder. A natural question that arises at  this point is how does an unsteady flow 
develop and how does this produce a net force on the contained fluid when it is 
released. The answer is that after the cylinder wall is removed, the first change that 
occurs is an instantaneous (since both fluids are incompressible) adjustment of the 
pressure field such that the pressure which was originally discontinuous across 8(t) 
becomes continuous. This adjustment of the pressure field in both regions of the flow, 
inside and outside s(t), causes the resulting unsteady motion and leads to  the 
development of a net force, as we shall show. 

We can compute the adjustment to the pressure field from the conservation 
equations for mass and momentum. Let the pressure in the two fluids at the instant 
the wall is removed be represented as 

1 = p‘-’+ 1 P l ,  (+) (2.11) 

p2 = pi--) +pi++’, (2.12) 

where pi-) ,  pi-)  satisfy the steady momentum equations before the wall is removed 
and pi+),  pi+) are the adjustments to the pressure field at  the instant the wall is 
removed. From (2.6), (2.7), (2.9) and (2.10), we obtain 

(2.13) 

(2.14) 

where C ,  and C,  are constants. Since the velocity field is unchanged at t = 0, the 
momentum equations become 

(2.15) 

(2.16) 

and taking the divergence of these equations gives, with (2.1) and (2.2), 

V2p$+’ = 0 ,  (2.17) 

VZpi+) = 0. (2.18) 
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FIGURE 2. Contour plot of the pressure field just after release. The dotted contour represents an 
intermediate value of the pressure, the dashed contours higher values and the solid contours lower 
values. The arrows indicate the directions of negative pressure gradients, showing how the circular 
cylinder of released fluid will initially deform. Only the upper half of the plot is shown since the 
flow is symmetric about the z-axis. 

The boundary conditions are 

pi-) +pi+) = pi-) +pi+) on r = ro, (2.19) 

and 

(2.20) 

(2.21) 

Boundary condition (2.20) ensures that the component of velocity normal to the 
surface r = ro remains continuous across this interface. The solution of this problem 
is 

(2.22) 

(2.23) 

A contour plot of the pressure fields p ,  and p ,  is shown in figure 2. From (2.15) and 
(2.16), which are valid for small times, i t  is clear that the initial perturbations to the 
steady velocity field are due to  gradients of the adjustments to the pressure field. The 
contour plot in figure 2 indicates that the perturbed motion is such that the circle 
will elongate in the cross-stream direction and shorten in the streamwise direction, 
as indicated by arrows in the plot (representing negative pressure gradients). 

The vortex-sheet method assumes this continuous pressure distribution auto- 
matically and is more efficient for computing the subsequent motion than continuing 
with the above procedure. We can determine the initial motion of the interface 
formally by developing a perturbation solution of the vortex-sheet equations. 
Expanding all dependent variables in Taylor series in non-dimensional time 
T = tUo/ro,  substituting these series into (A 3)-(A 8), and equating terms of equal 
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order in 7 up to O ( T ~ ) ,  we obtain the following expressions for the parametric 
representation of 8 ( t )  : 

X(B,, 7 )  = %Kzro 73 + (1 - ~ 7 ~ )  ro cos 8, - 2~%'r, cos 28, + O ( T ~ ) ,  (2.24) 

Y(8,, 7) = (1 + ~ 7 ~ )  ro sin 0, + 2 ~ % ~ r ,  sin 28, + 0(74), (2.25) 

where K = ( p z / p l ) / (  1 + p z / p l ) .  It is clear from these expressions that the interface does 
not move at all up to O(7). At  O ( T ~ )  the interface deforms into an ellipse with its minor 
axis, which decreases with time, along the streamwise direction and its major axis, 
which increases with time, perpendicular to the streamwise direction. Up to this order 
the flow remains symmetrical upstream and downstream of the plane through the 
origin and perpendicular to the mean flow direction and there is no net force on the 
released fluid. However, the flow is no longer steady and at O ( T ~ )  an asymmetric 
flow develops owing to the nonlinear interaction of the motion of the released fluid 
with the surrounding flow. Plots of the interface shape described by (2.24) and (2.25) 
are shown in figure 3 for a few values of K and 7. 

A consequence of this asymmetric flow is that a net force is imposed on the released 
fluid. The force is along the direction of the mean flow. In  fact, the position of the 
centre of mass of the released fluid is given by 

x(7) = ~ K ' ~ , T ~ + O ( ~ ~ ) ,  F(7) = 0. (2.26) 

Higher-order terms in the power-series expansion can be calculated to determine 
the motion for larger times after release, but this soon becomes very tedious. Instead, 
we chose to use a numerical method to compute directly the evolving shape of the 
interface. 

2.3. Small time 

The accurate numerical solution of problems of the type that we have posed here 
has proved in the past to be rather difficult. Indeed, Baker (1980) attempted to solve 
our problem for the case when p2/p1 = 1 using an improved version of the vortex-sheet 
method of Fink & Soh (1978) and found that the results of his numerical calculations 
were unreliable; the sheet crossed itself at some time after the initiation of the motion 
and this time became smaller as the number of points representing the interface was 
increased (when the calculation should have been becoming more accurate). Baker 
was unable to give any definitive reasons for the breakdown of his calculations, but 
he pointed out that there are several unresolved questions about the fundamental 
nature of vortex sheets and their suitability to numerical solution. 

The work of Moore (1979), Meiron, Baker & Orszag (1982), and Krasny ( 1 9 8 6 ~ )  
suggests that flat uniform vortex sheets that are given sinusoidal perturbations 
develop a singularity at  some finite time. At this time, the vortex sheet is generally 
smooth and only slightly distorted from its initial state but its curvature has become 
singular and the vorticity distribution has developed a cusp at  some point. This 
singularity is apparently the result of nonlinearity and Helmholtz instability. 
Nonlinearity spreads an initial disturbance throughout the spectrum and then 
Helmholtz instability, in which the growth rate of disturbances is proportional to 
their wavenumber, makes the small wavelengths grow so fast that at a critical time, 
which is a function of the initial conditions, the analyticity of the solution is 
destroyed. The evidence indicates that a unique solution exists up to this critical time. 
Similar results were found by Schwartz (1981) in an investigation of vortex sheets 
of finite length and non-uniform vorticity distributions. Moore (1981) suggests that 
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FIGURE 3. The interface shape near the critical time at which the vortex sheet becomes singular; 
_ _ - -  , 7 = 0 ;  ...... , computed shape using 256 markers; -, third-order Taylor series (2.24) and 
(2.25). (a) po/pI = 0.5, 7 = 0.70, ( b )  pz/pl = 1.0, 7 = 0.55, (c) p2/p1 = 2.0, 7 = 0.49. 

a singularity can develop in all vortex sheets that are not being sufficiently rapidly 
stretched everywhere. 

It is not surprising that numerical methods do not converge for times after the 
appearance of the singularity. However, Krasny (1986a) argues that most numerical 
methods are also not convergent even for times before the critical time. The failure 
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of a vortex-sheet method to converge to a unique solution before the critical time, 
according to Krasny, is due to the use of finite-precision arithmetic. Round-off error 
introduces spurious perturbations into the solution and once introduced these 
perturbations grow according to the dynamics of the equations. The larger the 
number of points used to represent the vortex sheet in the calculations, the higher 
the wavenumber at  which spurious disturbances are introduced and, as a consequence 
of Helmholtz instability, the sooner the singularity appears. Smoothing techniques 
of the type that is inherent in Fink & Soh’s method can slow down the effects of 
Helmholtz instability but these techniques do not make vortex-sheet methods 
convergent and they introduce errors into the calculation at all wavelengths. 

Krasny (1986~)  proposes a filtering technique that inhibits the destructive effects 
of round-off error and minimizes inaccuracies introduced by smoothing the solution. 
This technique does not prevent the growth of the small-wavelength motions that 
evolve from nonlinear interactions, but it does suppress any motion initially 
introduced by round-off error. Specifically, the filtering technique consists of taking 
fast Fourier transforms of the solution at each time-step and setting to zero the 
amplitudes that have magnitudes less than the floating-point precision of the 
calculation. This means that a Fourier coefficient must increase in magnitude greater 
than the floating-point precision in one time-step to get through the filter. Once all 
the coefficients have magnitudes greater than this precision, the filter has no further 
effect. Krasny (1986~)  applied this technique to the problem of a periodically 
perturbed flat vortex sheet and was able to obtain convergent results up to the 
estimated time that the curvature singularity appears. 

We have attempted to use Krasny’s filtering procedure with a vortex-sheet method 
to estimate the critical time 7, for the problem we have outlined here. The particular 
numerical implementation of the vortex-sheet method that we used is adapted from 
Roberts (1983). Our implementation of Krasny’s procedure is slightly different from 
his in that we filter the time derivative of the solution as opposed to the solution itself. 
The primary reason for this change is that it is more convenient with our time 
integration scheme. The effects of the filter should be unaltered. The details of the 
numerical method are given in Appendix A. Here we describe the results of the 
calculations. 

Calculations were done for three density ratios : p2/p1 = +, 1 and 2. The calculations 
were performed in double precision (about 14 decimal digits) and the filter threshold 
was set at  10-13. In each case we observed that the calculation developed a sawtooth 
instability at a time that decreased as the number of points N representing the 
interface increased. However, this time seemed to be converging to some non-zero 
value. We also monitored the time at  which the filter became no longer effective; that 
is, the time when first all Fourier amplitudes were larger than 10-13. This time 
increased as the number of points increased and seemed to be converging to the time 
when the instability first appeared. Table 1 lists these filter cut-off times 7, as a 
function of the number of points used to describe the interface. Also listed in this 
table are extrapolated values for these cut-off times 7: corresponding to N = CO. 

These were obtained by assuming that 
a 
N 

7, - 7r++ 
as N +  00 and determining 7: and a, by a least-squares fit to the computed values 
of 7c. The correlation coefficients, also shown in the table, indicate that the data fits 
this relationship very well. For the largest number of points (512 for p2/pI = 1 and 

11 FLM 177 
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N P2IP1=0.5 
32 0.268 
64 0.460 

128 0.585 
256 0.653 
512 - 

03 0.695 
( r  = -0.997) 

P d P l  = 1.0 
0.192 
0.333 
0.465 
0.520 
0.521 

0.549 
( r  = -0.991) 

P2/P1 = 2.0 
0.170 
0.353 
0.444 
0.471 
- 

0.524 
( r  = -0.999) 

TABLE 1. The critical time 7, at which the filter is no longer effective with a threshold of 10-'8 in 
the strictly inviscid calculations as a function of the number of points N used to describe the 
interface. The values corresponding to N = 00 were obtained by assuming a linear relationship 
between 7, and 1/N whose coefficients are determined by a least-squares fit to the computed values 
of 7,. The correlation coefficient r for the least-squares fit is shown in parenthesis. 

10-1 

10-2 

x 
TO 

- 

10-3 

10- 

10-6 

10-6 

7 

FIQURE 4. A plot of the centroid position X as a function of time after release for the three density 
ratios p2/pI = 0.5, 1.0, 2.0: -, as computed using the vortex sheet method with 256 markers; -, 
third-order Taylor series (2.26). 

256 for pz/pl =I= 1) the calculation broke down very soon after the filter cut-off time, 
so we propose that these extrapolations are estimates of the times when a singularity 
of some sort appears. These times are 7: = 0.70, 0.55 and 0.52 respectively, for the 
density ratios given above. 

Figure 3 shows the shape of the vortex sheet near 7," for tke three density ratios. 
The numerically computed shapes are represented by the solid circles, which are a t  
the actual positions of the marker particles, for the case with 256 particles. Using 
a larger number of points does not change the profile shape within the accuracy of 
the graph. The third-order Taylor-series solution (2.24) and (2.25) is represented by 
the solid line. As can be seen the profiles are smooth and only slightly distorted from 
their initially circular shapes. In fact, the Taylor-series solutions are quite close to 
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FIQIJRE 5. Plots of the vortex-sheet curvature E and vorticity strength per unit arclength w as 
functions of the parameter Bo at several times after release for the case with pJp1 = 1.0: -, 5; 

, w .  - - - -  

the numerical solutions. Figure 4 is a plot of the position of the centre of mass of 
the released fluid as a function of the time after release and shows that the 
Taylor-series solution (2.26) is a very good approximation to the numerical results 
up to the critical time. 

Figure 5 shows plots of the vortex-sheet curvature and the vorticity strength per 
unit arclength at three times after release for the case with p2/p1 = 1. The data for 
these plots were taken from calculations in which 256 markers were used. As the 
critical time is approached the numerical solutions indicate that a curvature 
singularity develops at two points on the interface and possibly a cusp in the vorticity 
strength develops at  each of these points. Similar results were obtained for the cases 
with p2/p1 =I= 1. Although we have not made an exhaustive study of the detailed 
nature of these singularities, the behaviour shown in figure 5 appears consistent with 
earlier studies of initially flat vortex sheets. 

The integral invariants of the problem, such as the area of the released fluid, the 
horizontal impulse and the kinetic energy were monitored throughout the calculation 
and found to remain constant to within the accuracy of the time-stepping scheme 
up to the time of the onset of the sawtooth instability. 

11-2 



318 J .  W .  Rottmun, J .  E .  Simpson and P .  K .  Stansby 

2.4. Intermediate time 
From the results of the previous section, i t  is clear that the vortex-sheet method 
cannot be used to continue the calculation, and indeed it is not clear that a solution 
exists or is unique after the critical time. In  the physical problem, the singular nature 
of Helmholtz instability is inhibited by a slight thickening of the interface due to  
viscous diffusion of the vorticity. We use two approaches which have been used by 
others to stabilize inviscid calculations, in effect by mimicing the effect of viscosity 
in a somewhat artificial manner. 

The first approach is a modification of the vortex-sheet method, the so-called 
vortex-blob method. This method uses the same description of the interface as the 
vortex-sheet method except that  the integrals describing the induced velocities have 
the singular parts of their integrands removed. This means essentially that the vortex 
sheet has a finite thickness or the vortices representing the sheet have finite cores. 
It is not strictly a thickening due to viscosity since the thickening does not increase 
with time. There are various versions of the method, many of them described in 
Leonard (1980). The particular implementation that we used is that of Krasny 
(1986 b)  and the details of the method are outlined in Appendix B. 

The second approach is the so-called vortex-in-cell method, which uses point or 
discrete vortices to  represent the sheet. Velocity is computed by distributing vorticity 
on to a rectangular grid and solving a finite-difference form of the Poisson equation 
for the stream function which is efficiently achieved using fast Fourier transforms. 
The velocity of a vortex (or any other point) is then determined by interpolation. 
The advantage of this procedure over the vortex-blob method is its greater efficiency 
and hence its ability to track a large number of particles. The vortex-blob method 
is restricted t o  about a few hundred particles because of computational restraints, 
whereas the vortex-in-cell method is able to handle several thousand. A pseudo-vis- 
cosity is introduced into the vortex-in-cell calculations by the process of distributing 
the vorticity from the discrete vortices on the rectangular grid and interpolating to  
obtain the velocity a t  each point. This causes fine-scale behaviour dependent 
primarily upon the grid spacing but also upon the number of vortices and the 
time-step. The grid spacing is crudely analogous to the core size of the vortex-blob 
method, which will be seen to have the advantage of not suffering fine-scale 
behaviour. The details of the vortex-in-cell method are described further in 
Appendix C. 

We also use the viscous formulation in an attempt to  compute directly, although 
in a somewhat artificial way, a small thickening of the vortex sheet. This is done by 
uniformly accelerating the onset flow for a short duration to a constant speed and 
then releasing the cylinder of fluid. Since the no-slip condition on the cylinder and 
viscous diffusion are incorporated during this short duration, a boundary layer of 
finite thickness is generated and released into the flow before a wake develops. We 
did this for various short durations to see how sensitive the calculations are to the 
initial conditions. 

The evolution of the interface, as computed using the vortex-blob method up to  
7 = 3, is shown in figure 6 for the case with p2/p1 = 1. The particular implementations 
of these methods restrict us to  this value of the density ratio, and so all the remaining 
calculations shown in this paper will be for this case. The prediction of the interface 
by the vortex-in-cell method, as shown in figure 7, is in general agreement although 
fine-scale structures, particularly as the sheets wrap-up, make direct comparisons 
difficult. At 7 = 1 the originally circular interface has deformed into a horseshoe-like 
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FIQURE 6. The evolution of the interface for small times after release, by the vortex-blob method, 
with 6 = 0 . 1 ~ ~  and 256 vortices marking the interface at 7 = 1.0, 2.0, 3.0 and pe/pl = 1.0. 

shape with the open end of the shoe pointing downstream ; at T = 2 the points of the 
horseshoe begin to wrap-up into tight spirals as the released fluid accelerates 
downstream, and at T = 3 the wrapping up of the released fluid into two concentrated 
regions of vorticity continues as the centre of mass moves further downstream. The 
movement of the centre of mass is essentially the same for both calculations. 

We found that the smaller the core size used in the vortex-blob method, the tighter 
the spirals became at a fixed time and, consequently, the greater the number of 
marker particles required to resolve them. These results are similar to those obtained 
by Krasny (19863) in his study of the roll-up of flat vortex sheets. 

To follow the motion for larger times we used the more economical vortex-in-cell 
method exclusively. Vortex-particle motion and concentration contour plots up to 
r = 8 are shown in figure 7. It appears that the released fluid wraps up into roughly 
circular closed cells of fluid consisting of two contra-rotating subcells. The area of 
the whole cell is about three times that of the original circle. Figure 8 is a plot of 
the speed U,, of the centre of mass of the released fluid as a function of the time 
after release up to time r = 20. Results with initially accelerating viscous flows of 
short duration T~ incident on the fixed cylinder are also shown. 7, = 0 is effectively 
the limiting case which is the main subject of this section. The results are quite similar. 
After release U,, at first increases rapidly up to T x 3, to a value dependent on 7,. 

As r, increases from 0 to 2, the maximum increases from 0.8U0 to 0.92U0. For r 2 6, 
U,, varies between 0.677, and 0.8U0 for all cases. That is, the released fluid plus the 
external fluid it has entrained eventually travels downstream at an approximately 
constant speed significantly less than U,. 

The integral invariants of the inviscid problem were monitored during the 
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7 0  

FIGURE 7. The shapes of an initially circular cylinder of fluid released from rest in a potential flow, 
computed using the vortex-in-cell method. The right-hand columns show the motion over one 
time-step (A7 = 0.1) of the point vortices marking the boundary of the released fluid. The left-hand 
column shows contours of concentration of particles marking the released fluid. Note that the 
free-stream flow direction in this figure is from top to bottom. 

vortex-blob calculation. As would be expected, the area and horizontal impulse were 
conserved to within the accuracy of the numerical scheme but the energy was not. 
The amount of energy lost depends on the core size. The larger the core size the greater 
the loss of energy. For the calculations shown in figure 6 (with a core size 8 = O.ir,,) 
the energy is about 10% less than the strictly inviscid value. The energy remains 
nearly constant a t  this lower value throughout the calculation. This is consistent with 
the idea that the vortex-blob method mimics an interface of fixed finite thickness. 
This is unlike viscosity, which continuously diffuses the vorticity in the interface (and 
thus continuously thickens the interface) and continuously loses energy. 

It is not possible to measure the integral invariants in the vortex-in-cell calculation 
since fine-scale structures on the interface develop after several time-steps. 
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FIGURE 8. The computed speed of the centre of mass of the released fluid as a function of time after 
release, calculated using the vortex-in-cell method, with impulsively started inviscid flow and with 
viscous flow (Re = 484) uniformly accelerating for time 7, before release : -, inviscid (78 = 0) ; 
0, 7, = 0.5; x , T~ = 1; 0, 7, = 2. Long-time values are also shown: ......, V,,  = 0.61U0 aa given 
by a Pierrehumbert vortex pair; -, U,, = 0.59U0 as given by a point-vortex pair; ---.-, 
U,, = 0.66U0 as given by a non-uniform vortex pair. 

2.5. Large time 

In this section we investigate some steady-state flows that may approximate the 
large-time limiting solutions of the problem we are considering. The numerical 
calculations described in the previous section indicate that the flow eventually 
becomes approximately steady with respect to translating axes and the vorticity 
becomes confined to a translating closed cell of fluid. The vorticity is distributed 
antisymmetrically about the z-axis with equal magnitude on either side but opposite 
sign. If we neglect the possible mutual destruction of vorticity due to viscous 
diffusion, then the total circulation in each half-plane is conserved. Thus, the 
numerical calculations suggest that the flow evolves into a steady vortex pair with 
distributed vorticity. 

Pierrehumbert (1980) describes a three-parameter family of such vortex pairs for 
which the vorticity is uniform within the two cores and the cores have shapes that 
are symmetrical about a plane perpendicular to the direction of propagation. His 
numerical calculations show that the family exhibits a continuous range from a pair 
of point vortices to a pair of vortex regions with boundaries in contact along the axis 
of symmetry parallel to the direction of propagation. Although it is unlikely that the 
vortex pair in our problem will have cores of uniform vorticity, Pierrehumbert’s 
family of vortex pairs should be a good approximation to our limiting flow except 
for perhaps the size of the vortex cores. 

We choose from the family of vortex pairs the one member that has the same 
circulation strength, fluid impulse, and energy as our inviscid flow. (We note that 
the analogous problem for a vortex ring has been solved by Taylor 1953 using the 
same criteria.) These quantities are conserved in inviscid flows with distributed 
vorticity as explained, for example, in Batchelor (1967). For our particular problem 
these quantities are, from Appendix A, 

ro = 4U0r0, (2.27) 

I ,  = --pnUo r;, (2.28) 

T = n e r ; ,  (2.29) 

where ro is the circulation strength, I ,  is the horizontal fluid impulse, and T is the 
total energy. To be precise, I ,  and Tare the impulse and energy per unit length along 
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the x-axis. In terms of Pierrehumbert’s notation, T* = T / p r i  = &n is the non- 
dimensional energy and X, = IJpT,, = am, is half the distance between the centroids 
of vorticity. 

Interpolating in Pierrehumbert’s table 1, we calculate that  the vortex cores are 
roughly elliptical in shape, not greatly distorted from a circle, with an effective radius 
of 0.60r0 and a cross-sectional area of 0.36nrt. The vortex pair carries with it a closed 
cell of fluid roughly oval in shape with a cross-sectional area of 2.51xri. This implies 
that, in the process of. wrapping up the original cylinder of fluid into the closed-cell 
structure, more than an equal quantity of the surrounding fluid has been entrained 
as well. The self-induced translation speed of the pair is V = -0.388U0; that is, in 
a reference frame in which the fluid speed is U,, a t  infinity, the closed cell of fluid 
travels downstream with speed U,, = U ,  + V = 0.61 U,. 

It is interesting to compare these results with similar calculations assuming that 
the asymptotic state is a pair of point vortices or the steady flow with a non-uniform 
distribution of vorticity described by Batchelor (1967, pp. 534-535). Of course, in 
these cases we can only match the circulation strength and impulse, but since our 
numerical calculations are not strictly inviscid for large times, they do not conserve 
energy anyway and, as it turns out, the results are not greatly different. For the pair 
of point vortices the closed cell of fluid is nearly an ellipse with an area of 2.27~: and 
travels downstream with speed U,, = 0.59U0. For the non-uniform distribution of 
vorticity, the closed cell of fluid is a circle with an area of 2.92nri and travels 
downstream with speed U,,  = 0.66U0. 

From figure 7 we estimate that the cross-sectional area of the closed cell of fluid 
at 7 = 8 is between 2.8 and 3.1 times the area of the original cylinder of released fluid. 
The translation speeds predicted above are plotted in figure 8, along with our 
numerical calculations using the vortex-in-cell method. Since all three assumptions 
give results close to  the numerical calculations, i t  appears that the general features 
of the flow at  large times are fairly insensitive to the structure of the vorticity 
distribution. 

3. Release with a well-developed wake 
The basis of the numerical scheme for viscous flow has been outlined and details 

are given in Appendix C. We have already considered cases with a uniformly 
accelerating flow of short duration before release providing a thin attached layer of 
vorticity on the cylinder surface. In  this section we consider cases with a steady flow 
incident on the cylinder for a sufficiently long time for boundary layers to separate 
and develop a wake representative of a Karman vortex street. 

3.1. The flow before release 
The flow was initiated impulsively from rest. Previous calculations (Stansby & 
Dixon 1983) have shown that the wake behind the cylinder produced by the shedding 
of vorticity becomes periodic without imposing any kind of external asymmetry, but 
this requires a rather long time to be established. To reduce this time (and any errors 
associated with the wake reaching the downstream boundary of the computation 
domain) an asymmetry was artificially introduced by setting a cross-flow velocity 
equal to U ,  during the early stages (0 < 7 < 1). The resulting periodic wake flow for 
Re = 484 is shown in figure 9 a t  7 = 30 and 32. Each small line segment represents 
the movement of a discrete vortex over one time-step (A7 = 0.1). 

The time variations of drag and lift (which include the influence of surface shear 
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FIGURE 9. The computed vorticity structure due to steady uniform flow incident on a circular 
cylinder at (a)  7 = 30 and ( b )  32, after impulsive initiation of the flow with Re = 2U0 ro/v = 484. 
The dashes show the movement of discrete vortices in one time-step (A7 = 0.1). 

stress), non-dimensionalized by pu;4 ro, are plotted in figure 10. The plots have been 
smoothed over five time-steps to remove a random component which is associated 
with the numerical method. The impulsive forces a t  7 = 0 and 1 are caused by the 
impulsive changes in onset velocity. The mean non-dimensional drag is about 1.5 and 
the Strouhal number is very close to 0.2. The latter is in agreement with experiment 
while drag is overestimated by about 15 yo. The non-dimensional mean pressure 
around the cylinder (averaged between 7 = 25 and 50) is plotted in figure 11 (full 
line B). The experimental data of Thom (1928) for Re = 250 and 484 are also plotted. 
The vortex method generally underpredicts pressure, relative to the upstream 
stagnation pressure, around the cylinder and results computed with Re = 250 and 
484 were virtually identical while the experiments show significant differences. For 
this study the vortex-in-cell method uses uniform rectangular meshes and the stream 
function at the cylinder surface is not exactly constant after a vortex sheet has been 
introduced to represent the surface at  each time-step. This has been achieved by using 
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FIGURE 11 .  The computed non-dimensional pressure C ,  = (p -p,)/tp Q averaged for 25 Q r Q 50 
on the surface of the cylinder as a function of angular position is shown by the full lines: A uses 
a polar mesh and B uses Cartesian meshes in the vortex-in-cell method (Re = 250 or 484). 
Experimental results of Thorn (1928) are shown by the dashed lines: A, Re = 484; B, Re = 250. 

a polar mesh with its inner boundary coincident with the surface (Smith 1986). 
Results are shown in figure 11 (full line A) and agreement with experiment at Re = 250 
is much improved. This demonstrates the sensitivity of the numerical method to the 
vortex-in-cell mesh and particularly to the surface boundary conditions. The polar 
mesh is of course inappropriate for this application where we need to calculate the 
motion of the enclosed fluid. However, the use of rectangular meshes may be said 
to approximately reproduce important features of the experimental data. Separation 
positions at about 93' from the front stagnation point are in reasonable agreement 
with experiment. 

Very similar pressure distributions were produced by averaging between 7 = 15 
and 30, suggesting that a wake representative of a long duration has become 
established by 7 = 15. Release time will in fact be varied between 7 = 20 and 36. 
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FIGURE 12. The computed shapes of an initially circular cylinder of fluid released from rest in a 
flow with a well-developed wake a t  Re = 484. The right-hand columns show the movement of 
discrete vortices in one time-step (A7 = 0.1). The left-hand columns show contours of concentration 
of particles marking the released fluid. Note that the free-stream flow direction in this figure is from 
top to bottom. 

3.2. TheJlow after release 
After the wake flow was considered to be established, the fluid inside the cylinder 
was released by omitting the calculation of the vortex sheet that was used to make 
the normal and tangential components of the fluid velocity zero at the cylinder 
surface. Typical resulting motion is shown in figure 12, which is analogous to figure 7. 
The time shown in the figure is the non-dimensional time after release. 

The speed of the centre of mass of the released fluid is plotted as a function of time 
after release in figure 13 for various times of release. The initial behaviour is always 
very similar but the longer-term behaviour can be quite different. As shown in figure 
12, the released fluid initially elongates in the cross-stream direction and then begins 
to form a rough horseshoe shape similar to the early stages of the inviscid-flow 
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FIGURE 13. The computed speed of the centroid of the released fluid as a function of time after 
release, in a flow with a well-developed wake at Re = 484. The different curves represent different 
release times after the impulsive start of the flow: 0, release at 7 = 29; +, release at 7 = 30; 0, 
release at 7 = 32, x , release at 7 = 33. 
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FIGURE 14. The computed speed of the centre of mass of the released fluid at time 7 = 15 after 
release in a flow with a well-developed wake at Re = 484 as a function of time of release. 

problem (figure 7) .  The influence of the wake is apparent in the asymmetry of the 
released fluid. This is dependent upon the exact release time since the wake is 
oscillatory and the horseshoe shape may develop in a more or less symmetric manner. 
At some stage the speed of the centre of mass becomes greater than the onset flow 
velocity as released fluid is entrained by an area of vorticity which imposes a velocity 
in the downstream direction. In  certain cases this holds a t  least until time 7 = 15 
after release but this is unlikely to be maintained and the speed will presumably 
oscillate about the onset flow velocity until, after a very long time, the wake and 
released fluid become so diffuse that they travel downstream a t  the onset flow 
velocity. 

The horseshoe shape is generally well formed by time 7 = 5 after release and the 
ends can appear to join up forming a roughly circular loop of fluid before breaking 
up. Figure 14 shows the speed of the centre of mass at time 7 = 15 after release as 
a function of the time of release. Remarkably, with release at 7 = 30, the initial 
horseshoe returns to  a roughly circular area of enclosed fluid with a speed of 0.6U0. 
It is of course unlikely that this will be maintained and the result is not reproduced 
with fluid released in other half-cycles of vortex shedding. This emphasises the 
sensitivity of the motion of the released fluid to the structure of the wake a t  release. 
Comparing the inviscid-flow results shown in figure 8 with the present case, we see 
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that the speed initially increases more rapidly in the former case, achieving a 
maximum speed of 0.8U0 at 7 x 2, but that the present case achieves a larger speed 
( x  U,)  at 7 x 5. The ultimate speed is also likely to be greater than in the 
inviscid-flow case. 

4. Experiments 
The experiments we performed were rather simple in design and execution and were 

intended mainly for qualitative comparison with the numerical results described in 
the previous sections. We used the continuous-flow water channel described by 
Britter & Simpson (1978). The working section of this tank is 16.5 cm wide and about 
1 m long. The available range for the mean speed U, of the flow in the channel is 
from 1 to 6 cm/s. An experiment was performed by placing a plastic tube of circular 
cross-section in the flow about 25 cm from the beginning of the working section, 
adding a small amount of coloured dye or fluorescein to the fluid inside the tube, and 
then withdrawing the tube vertically by hand. The resulting motion was photo- 
graphed from directly above the release point with a motor-driven camera at an 
exposure rate of three frames per second. 

It is not clear that the inviscid flow we have described can be produced in practice. 
After some trial and error attempts we were able to produce qualitatively similar 
results, although viscosity seemed to play a much stronger role than in the numerical 
computations. We used a shallow flow, about 1.6 cm deep, a flow speed of 1.8 cm/s 
(as measured by timing the movement of a small patch of dye on the surface), and 
a tube with a radius of 2.5 cm. This produced a flow with a small, nearly closed 
recirculation region just downstream of the cylinder. For this case we used dye to 
visualize the motion of the released fluid. Sequential photographs of the flow are 
shown in figure 15(a). The last photograph in the sequence corresponds roughly to 
7 = 2 (or slightly less depending on how U, is defined in a flow where the upstream 
velocity profile is non-uniform). The photographs show a distinct roll-up of the 
released fluid into a pair of contrarotating vortices. However, the spirals are not as 
tight as in our numerical calculations. In fact, the loosely wound spirals appear like 
the vortex-blob calculations for a much larger core size than we used for the results 
in figure 6. 

The wake problem was simulated by using a depth of 6 cm in the tank and flow 
speeds greater than 1 cm/s. These conditions produced a flow with a Karman- 
vortex-street wake downstream of the cylinder. In  this case we used fluorescein 
illuminated from the side by slit lighting to visualize the flow. The slit of light was 
about 1 cm wide and illuminated a horizontal slice of the channel about 1 cm below 
the free surface. Sequential photographs of the motion with r, = 2  cm and 
U, = 4 cm/s (Re = 1600) are shown in figure 15(b). These photographs were taken 
at 0.67 s intervals. The last photograph in the series corresponds to 7 = 7 in figure 
12. The general shapes are roughly the same, although the experimental ones are more 
symmetric (but this is only a matter of timing). Other experiments showed markedly 
asymmetric behaviour. The contrast with figure 15 (a) is very apparent. In the present 
case, the released fluid evolves into a thin, horseshoe shape, as opposed to a pair of 
diffuse contrarotating vortices. We performed experiments for Reynolds numbers in 
the range 400-2400 and observed little qualitative change in the evolving shape of 
the released fluid. 

We attempted to measure the position of the centroid of the released fluid as a 
function of time after release in this latter series of experiments. The centroid at each 
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FIQURE 15. Sequential photographs of the motion resulting from the release of a circular cylinder 
of dyed fluid in a uniform flow: ( a )  shallow flow simulating potential flow, r0 = 2.5 cm, 
U,= 1.8cm/s , t=  1.33s,1.67s,2.0s.2.33s;(b)deepflowwithRe= 1 6 0 0 , r , = 2 c m , U o = 4 c m / s ,  
t = O s ,  1 .6s ,  3 . 2 s , 3 . 8 s .  
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T after release 

FIQURE 16. The computed position of the centre of mass of the fluid after release with a 
well-developed wake at Re = 484: -----, release at 7 = 30; -, release at 7 = 32; ----, release 
at 7 = 33. Experimental points are included for: 0, Re = 440; V, Re = 800; A, Re = 1600, with 
error bars in the top left-hand corner. 

time interval was determined by projecting the photographic images onto cardboard, 
cutting out the image of the released fluid, and hanging this vertically from three 
different points. The intersection of three vertical lines drawn this way determines 
the geometric centroid within graphical accuracy. We also weighed the cardboard 
cutouts and found that the weight remained constant within 10% during an 
experiment, implying that the motion was roughly two-dimensional. With the 
geometric centroid of the released fluid known, its position relative to the release 
centre could be determined using reference markings in the photographs. This was a 
tedious process and therefore was only performed for three experimental runs. 
Although our measurements were subject to errors due to difficulties in determining 
the exact release time, the results of these three cases seemed fairly consistent. The 
experimental results and the computed results are plotted together in figure 16. The 
agreement is good although, with the uncertainties in determining the release times, 
this cannot be considered an entirely conclusive result. 

Finally, we would like to compare our results qualitatively with the Thorney 
Island field trials. One difficulty with this comparison is that in most of the field trials 
a heavier-than-air gas (usually about twice the density of air) was released into a fairly 
light cross wind. This means that gravity played an important role, causing the 
released gas to collapse and spread out along the ground before the wind could have 
any significant effect. In a few of the early trials neutrally buoyant gas was released 
but unfortunately no photographs or measurements were taken. However, in one of 
the later trials (Trial 24) the conditions were such that part of the released gas was 
affected strongly by the wind and because of an accident in the set-up it is possible 
to see the motion of this part of the flow. 

Figure 17 shows an overhead view of Trial 24 at about 4 s after the tent walls 
containing the gas were released. The tent is roughly circular in cross-section with 
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FIGURE 17. An overhead photograph of trial 24 of the Thorney Island field trials. The photograph 
was taken 4 s after the sides of the circular tent (visible in the photograph as a white circle) were 
pulled to the ground. The tent is 10 m in diameter and the wind is from the top of the photograph 
with a speed of about 7 m/s. The less dense section of the cloud has formed a crude horseshoe shape 
above the denser cloud that is spreading over the ground. 

a diameter of 10 m and a height of 13 m. The cross wind speed in this particular trial 
was measured to be 7 m/s a t  10 m above the ground. By accident in this trial only 
the top half of the tent was filled with the coloured smoke used to mark the fluid 
inside the tent. When the heavy gas collapses t o  the ground, mixing at the upper 
part of the cloud leaves a volume of gas that is much less dense than the rest of the 
cloud but is coloured by the smoke. This less dense cloud is swept downstream by 
the wind as we have described. I n  this particular case it is more easily visible from 
an overhead view since the main cloud, which is underneath the less dense cloud, 
contains less smoke than usual. This dilute smoke cloud shows all the major features 
we have described for the viscous-flow problem here, although the details of the two 
flows are different since the Reynolds number for this field trial is several orders of 
magnitude greater than our numerical calculations and the ‘end’ conditions are 
completely different. 

The photograph shows that the cloud has expanded significantly in the direction 
perpendicular to the free-stream flow direction and that the upper cloud has deformed 
into a broad horseshoe shape. This photograph corresponds to a time 2 < 7 < 3 
(taking into account that  the tent walls require about 2 s to be pulled to the ground). 
Considering all the differences in the two configurations and the difficulties in 
determining the exact release time, the correspondence with the computations in 
figure 12 is quite good. 
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5. Concluding remarks 
We have applied a variety of numerical methods and a few analytical techniques 

in an attempt to determine the flow that results when a circular cylinder of fluid at  
rest is released into a cross-flow. Our results indicate that when the fluids are strictly 
inviscid a solution exists only for a very short time after the cylinder of fluid is 
released. The vortex sheet develops a singularity a t  some finite time, as has been 
found by earlier investigators working on related problems. Soon after the appearance 
of the singularity, the numerical methods become unstable. 

One way to avoid this difficulty is to allow the vortex sheet to have a finite 
thickness. We used two numerical schemes that, in effect, give the vortex sheet a finite 
thickness in a somewhat ad hoc way. These methods may be thought of as producing 
‘weak ’ solutions, by analogy with shock solutions of hyperbolic problems. We have 
compared these calculations with cases where a thin layer of vorticity is produced 
in a viscous starting flow before release. The results of all three approaches differ 
mainly in their fine-scale structure; the larger features of the flow agree fairly well. 

We have also considered the viscous problem when a wake is present before the 
cylinder of fluid is released. The general form of the released fluid, its deformation 
into a horseshoe shape, is basically similar to the inviscid case at early times, but 
the orientation and eventual speed of the released fluid is quite sensitive to when the 
release takes place during the wake’s shedding cycle. Of course, the long-time 
behaviour, when viscosity has had sufficient time to thoroughly diffuse the vorticity 
in the flow, is quite different from the inviscid case. 

Although we have performed these calculations and experiments for two specific 
and idealized problems, we hope our results may provide some insight into more 
fundamental problems. For example, mixing in fluids can be thought of in terms of 
blobs of fluid being injected or transported into different regions of a flow where 
velocity and perhaps density are different from where the blobs came. How these 
blobs accelerate and deform in their new environment determines mixing efficiency. 
Also, structures similar to those that we have computed have been seen making up 
the streaklines associated with turbulent boundary layers. 

We would like to thank A. J. Roberts for help with adapting his vortex-sheet 
program to our problem, and J. M. R. Graham and J. C. R. Hunt for several 
informative discussions. The referees comments were most helpful in developing 
this work. J .W.R. was supported by the U.K. Health & Safety Executive under 
Contract 1918/01.01. The vortex-in-cell computations were made at the University 
of Manchester Regional Computer Centre. 

Appendix A. The vortex-sheet method 
The entire flow is determined by the position, shape and strength of the vortex 

sheet that marks the interface between the fluid that was originally inside the cylinder 
and that outside. Any distribution of vorticity on S(t)  describes a flow that satisfies 
(2.1)-(2.3). Since the vortex sheet is transported with the fluid, knowledge of the flow 
field determines the shape and position of S(t) .  The boundary condition (2.4) 
determines the time evolution of the distribution of vorticity on S(t) .  

The velocity field for a given distribution of vorticity on a surface in the fluid may 
be determined from the complex potential function f(z) : 
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where z = z+ iy is the complex position of the field, Z = Z(B,, t )  = X(8,, t )  + i Y(B,, t )  
is the complex position on the interface, y = y(B0, t )  is the vorticity strength per unit 
t?,, and 8, is a parameter that describes the interface (the initial angular position of 
the points on the interface). The velocity field everywhere except on the interface 
is given by 

As z approaches Z’ = Z(8;, t )  a point on the interface, from inside the contour or 
outside the contour, we find that 

where the minus sign is chosen for inside the contour, the plus sign for outside the 
contour and y‘ = y(8;, t ) .  The integral is a Cauchy principal value integral and the 
derivation of the above formula involves the use of the Plemelj formula. 

The equations describing the position of the interface are 

D X  
- = ( l - a )  U-+aU+; 
Dt 

(A 5) - = (l-a) V-+aV+, 
D Y  
I>€ 

where 
D/Dt = a /a t+[ ( l -a )  U - + a U + ] * V .  

Since U- = ( U p ,  V-) and U+ = (U+,  V+) have equal components normal to the 
interface, a may be any function of 8, and t .  We chose a = 0 when 0 < p2/p1 < 1 
and a = 1 when p2/p1 3 1 to avoid a numerical instability described by Roberts 
(1983). 

Finally, the time evolution of y is determined by solving the following pair of 
equations. From (2.8) and using (A 4)-(A 6) we obtain the first equation 

where q5 = q51 - (p,/p,) 4,. We obtain the second equation by differentiating 
with respect to B0 and taking the real part, 

Thus, given Z and q5 a t  some time, the evolution of the interface can be determined 
by evaluating (A 3)-(A 5) and solving (A 7)  and (A 8). 

We did this numerically using essentially the algorithm devised by Roberts (1983). 
This algorithm is particularly fast and accurate because i t  uses fast Fourier 
transforms to compute the derivatives and the trapezoidal rule for the integrals. Since 
we work with a closed interface, all functions are periodic in 8, and therefore the errors 
in these numerical methods are exponentially small. For further details of the.method 
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and its implementation, the reader is referred to Robert's paper. We note here that, 
since the flow is symmetric about the x-axis, we actually only computed the flow 
above the axis. However, in the text the number of points stated to  describe the 
interface is the number of points on the whole interface, i.e. twice the number of 
points used in the calculation. 

The inviscid problem has several integral invariants that  are useful for monitoring 
the accuracy of the calculation. These, and their values for our problem, are 

(A 1 1 )  

where A is the area of the released fluid, I ,  is the horizontal component of the fluid 
impulse and T is the kinetic energy of the flow in a reference frame in which the fluid 
speed a t  infinity is zero. These quantities are derived, for example, in Batchelor 
(1967, pp. 527-530) and the above formulae for them are obtained by judicious use 
of Green's theorem. 

Two other quantities used in the presentation of results are the curvature 

and the so-called true vorticity strength (the vorticity strength per unit arc length) 

w = y/[(!y+(y]i do, do, 

Appendix B. The vortex-blob method 
The vortex-blob method, which was introduced by Chorin & Bernard (1973), for 

desingularizing the evolution of vortex sheets has a variety of different implementa- 
tions. Many of these are reviewed by Leonard (1980). The particular implementation 
we chose, mainly because i t  was the easiest modification of our vortex-sheet 
formulation, is that  due to  Krasny (19863). The modification, which only applies 
when p2/p1 = 1 ,  consists of replacing (A 4) and (A 5 )  with 

y(  Y -  Y)dB, + u,, DX 
[ ( X - X ) ' + ( Y ' -  Y)'+S'] 

DY 1 y( X - X) do, 
[(X-X)'+(Y'- Y)2+S2]'  

and (A 7)  and (A 8) with 
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where 6 is a positive real number (a  measure of the core size). When 6 = 0, (B 1)-(B 4) 
are the same as (A 4)-(A 8) with p2/p1 = 1 and a = t .  When 6 > 0, the integrals in 
(B 1) and (B 2 )  are proper and for small 6 are a desingularized approximation of the 
exact vortex-sheet evolution equations. Typically in the calculations for the present 
paper 6 x 0 . 1 ~ ~ .  

Appendix C. The random walk/vortex-in-cell method 

vorticity equation 
In two dimensions the flow around cylindrical bodies may be described by the 

Dw 
- = vvzw, 
Dt 

with specified onset flow conditions and zero-slip and zero-normal-velocity conditions 
imposed at solid surfaces. I n  (C 1) w is vorticity (w = V x u)  and v is kinematic 
viscosity. Vorticity is related to stream function $ through the Poisson’s equation 

w ,  

u = V $ / x k ,  

V $ = -  2 

and $ is related to  velocity by 

where k is a unit vector perpendicular to  the plane of the flow. 
Using Chorin’s (1973) fractional-step method to advance vorticity in time, the 

inviscid part of the vorticity equation is solved by time-stepping discrete vortices and 
the diffusive part is added by superimposing normally distributed random walks on 
the orthogonal coordinates of each vortex at each time-step. The variance of the 
random walk has a magnitude of 2vAt where At is the time-step. One attraction of 
the method is that  it avoids numerical diffusion problems associated with Eulerian 
schemes. The method has been widely tested with idealized and applied problems 
which will not be reviewed here. 

I n  this application, which closely follows Stansby & Dixon (1983), the zero-velocity 
condition at a surface is satisfied at each time-step by introducing a vortex sheet 
through a standard boundary-integral method. The sheet strength a t  equispaced 
points around the surface is determined from tangential velocities on the surface (in 
fact just inside the surface owing to numerical constraints) and an inverted influence 
matrix. The net circulation on the sheet is maintained a t  zero to ensure closure of 
the pressure integration as described below. The sheet is converted into discrete 
vortices for the numerical development. Vortices which random walk inside the 
surface are reflected on to their mirror-image positions outside to correctly maintain 
the tangential velocity condition on the surface (Chorin 1978). 

The inviscid interaction of fields of vorticity may be calculated by the vortex-blob 
method which is a formally convergent solution when a blob core overlaps several 
adjacent blob centres (Hald 1979). This is roughly equivalent to  there being several 
vortices per cell in the vortex-in-cell method which will now be described. 

The principle of the method has been outlined in $2.4. The implementation used 
here is the same as that used by Stansby & Dixon (1983). Poisson’s equation, (C 2 ) ,  
is solved using three rectangular overlapping meshes with uniform grid spacing. This 
is suited to  the high-Reynolds-number wake problem where a fine inner mesh 
provides definition in the boundary layer, an intermediate mesh allows rolling-up in 
the near-wake region and a coarse outer mesh transports large structures downstream. 
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The meshes are solved sequentially from the coarse outer mesh inwards. The 
boundary of the outer mesh is sufficiently far from the vorticity (which has zero net 
circulation) for the stream function on the outer boundary due to vorticity to be set 
to zero. To solve on the intermediate mesh the stream function on its boundary is 
obtained from the coarse-mesh solution and to solve on the fine mesh the stream 
function on its boundary is obtained from the intermediate-mesh solution. For these 
applications cell sizes of 0.04, 0.16 and 0.64 cylinder radii were used with 64 x 64, 
64 x 40 and 128 x 40 meshes respectively. The inner-cell size is close to the standard 
deviation of the random walk with Re = 484. The velocity a t  a point is calculated 
from the mesh with the smallest possible cell size. After release of the cylinder of fluid 
the vortex positions are adjusted so that the centre of mass of the released fluid is 
also the centre of the inner mesh so that the development of the main region of interest 
has the best definition available. 

The surface vortex sheet is divided into 60 segments for the numerical calculation 
and each segment is then represented as one or more discrete vortices. The time-step 
AT was generally set to 0.1 although smaller values were used for checking. 

To release the fluid within the cylinder the introduction of the vortex sheet a t  
the surface is simply stopped. The interface between the interior and exterior fluids 
quickly becomes ill-defined, owing to diffusion in the viscous case and to fine-scale 
grid-dependent behaviour in the inviscid case. To compute the motion of the interior 
fluid it is represented by a uniform distribution of markers with initial spacings of 
0.04 radii in the 5- and y-directions. Once the fluid is released, the positions of these 
markers are advanced in time in the same way that the discrete vortices are advanced 
in time. There are thus 1963 markers in the flow and these are used to determine the 
position and speed of the centre of mass. In addition, since each marker may be 
considered to represent a small finite area of fluid they may be used to determine 
concentrations on a suitable mesh ; for convenience we use the intermediate vortex- 
in-cell mesh. The area associated with each marker is converted into concentrations 
at mesh points using the same distribution procedure that is used to determine 
vorticity from the circulations of the discrete vortices (sometimes referred to as 
area weighting). There are sufficient fluid markers to produce smoothly varying 
concentrations and hence reasonable contour plots using a standard computer- 
graphics routine. 

We finally describe an improved scheme for calculating the surface pressure 
distribution on a cylinder surface. At  the wall the boundary-layer equation reduces 
to 

where s is distance along the wall in a clockwise direction and n is distance normal 
to the wall. Also, the vorticity equation reduces to 

giving a circulation flux through the wall of -vaw/anl,,, per unit length, and 
-vAt ao/anln,o is thus the vortex sheet strength y that is created on the surface in 
one time-step. The equation for pressure becomes 
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where p, is pressure a t  s = 0. For pressure to return to its original value once a circuit 
has been completed we require $7 ds = 0 and this condition is included explicitly in 
the boundary-integral solution for y. 

R E F E R E N C E S  

BAKER, G. R. 1979 The cloud-in-cell technique applied to the roll-up of vortex sheets. J. Comp. 
Phys. 31, 76-95. 

BAKER, G. R. 1980 A test of the method of Fink and Soh for following vortex-sheet motion. 
J .  Fluid Mech. 100, 209-220. 

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press. 
BRITTER, R. E. & SIMPSON, J. E. 1978 Experiments on the dynamics of a gravity current head. 

J .  Fluid Mech. 88, 223-240. 
CHORIN, A. J. 1973 Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785-796. 
CHORIN, A. J. 1978 Vortex sheet approximation of boundary layers. J. Comp. Phys. 27, 428- 

442. 
CHORIN, A. J. & BERNARD, P. S. 1973 Discretisation of a vortex sheet with an example of roll-up. 

J. Comp. Phys. 13,423429. 
CHRISTIANSEN, J. P. 1973 Numerical simulation of hydrodynamics by a method of point vortices. 

J. Comp. Phys. 13, 363-379. 
FINK, P. T. & SOH, W. K. 1978 A new approach to roll-up calculations of vortex sheets. Proc. R.  

SOC. Lond. A 362, 195-209. 
HALD, 0. 1979 The convergence of vortex methods 11. SIAM J. Numer. Anal. 16, 726-755. 
HALL, D. J., HOLLIS, E. J. & ISHAQ, H. 1984 A wind tunnel model of the Porton dense gas spill 

field trials. In Proc. IUTAM Symp. on Atmospheric Dispersion of Heavy Cases and Small 
Particles, Delft, The Netherlands, August 1983 (ed. G. Ooms & H. Tennekes). Springer. 

KRASNY, R. 1986a A study of singularity formation in a vortex sheet by the point-vortex 
approximation. J. Fluid Mech. 167, 65-93. 

KRASNY, R. 19863 Desingularization of periodic vortex sheet roll-up. J. Comp. Phys. 65,292-313. 
LEONARD, A. 1980 Vortex methods for flow simulation. J. Comp. Phys. 37, 289-335. 
MCQUAID, J. 1984 Large scale experiments on the dispersion of heavy gas clouds. In Proc. ITJTAM 

Symp. on Atmospheric Dispersion of Heavy Gases and Small Particles, Delft, The Netherlands, 
August 1983 (ed. G. Ooms & H. Tennekes). Springer. 

MEIRON, D. I., BAKER, G. R. & ORSZAG, S. A. 1982 Analytic structure of vortex sheet dynamics. 
Part I. Kelvin-Helmholtz instability. J. Fluid Mech. 114, 283-298. 

MOORE, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving 
vortex sheet. Proc. R. SOC. Lond. A 365, 105-119. 

MOORE, D. W. 1981 On the point vortex method. SZAM J. Sci. Stat. Comput. 2, 65-84. 
PICKNETT, R. G. 1981 Dispersion of dense gas puffs released in the atmosphere a t  ground level. 

PIERREHUMBERT, R. T. 1980 A family of steady, translating vortex pairs with distributed 

ROBERTS, A. J. 1983 A stable and accurate numerical method to calculate the motion ot' a sharp 

SAFFMAN, P. G. & BAKER, G. R. 1979 Vortex interactions. Ann. Rev. Fluid Mech. 11, 95-112. 
SCHWARTZ, L. W. 1981 A semi-analytic approach to self-induced motion of vortex sheets. J. Fluid 

SMITH, P. A. 1986 Computation of viscous flows by the vortex method. PhD thesis, University 

SMITH, P. A. & STANSBY, P. K. 1985 Wave-induced bed flows by a Lagrangian vortex scheme. 

Atmos. Environ. 15, 509-525. 

vorticity. J. Fluid Mech. 99, 129-144. 

interface between fluids. ZMA J. Appl. Maths. 31, 13-35. 

Mech. 11 1, 47-90. 

of Manchester. 

J. Comp. Phys. 60, 489-516. 



Motion of a cylinder of Jluid released in a cross-$ow 337 

STANSBY, P. K. BE DIXON, A. G. 1983 Simulation of flows around cylinders by a Lagrangian vortex 

TAYLOR, G. I. 1953 Formation of a vortex ring by giving an impulse to a circular disc and the 

%OM, A. 1928 An investigation of fluid flow in two dimensions. Aero. Res. Counc. R & M ,  

scheme. Appl. Ocean. Res. 5 ,  167-178. 

dissolving it away. J .  Appl. Phys. 24, 104-105. 

No. 1194, 166-183. 


